Fonction zêta de Hurwitzvignette|Fonction zêta de Hurwitz En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie, pour toute valeur q du paramètre, nombre complexe de partie réelle strictement positive, par la série suivante, convergeant vers une fonction holomorphe sur le demi-plan des complexes s tels que Re(s) > 1 : Par prolongement analytique, s'étend en une fonction méromorphe sur le plan complexe, d'unique pôle s = 1. est la fonction zêta de Riemann. où Γ désigne la fonction Gamma.
Fonction digammaEn mathématiques, la fonction digamma ou fonction psi est définie comme la dérivée logarithmique de la fonction gamma : À la suite des travaux d'Euler sur la fonction gamma, James Stirling a introduit la fonction digamma en 1730, en la notant par Ϝ, la lettre grecque digamma (majuscule). Elle fut par la suite étudiée par Legendre, Poisson et Gauss vers 1810 ; la convergence de la série de Stirling pour cette fonction a été démontrée par Stern en 1847. Elle est désormais le plus souvent notée par la lettre ψ (psi minuscule).
Fonction gamma incomplèteEn analyse mathématique, il existe plusieurs définitions de fonctions gamma incomplètes : pour un paramètre complexe a de partie réelle strictement positive, La dérivée de la fonction gamma incomplète Γ(a, x) par rapport à x est l'opposée de l'intégrande de sa définition intégrale : La dérivée par rapport au paramètre a est donnée par et la dérivée seconde par où la fonction T(m, a, x) est un cas particulier de la Ce cas particulier possède des propriétés internes de fermeture qui lui sont propres parce qu'
Fonction polylogarithmeLa fonction polylogarithme (aussi connue sous le nom de fonction de Jonquière) est une fonction spéciale qui peut être définie pour tout s et z < 1 par : Le paramètre s et l'argument z sont pris sur l'ensemble C des nombres complexes. Les cas particuliers s = 2 et s = 3 sont appelés le polylogarithme d'ordre 2 ou dilogarithme et le polylogarithme d'ordre 3 ou trilogarithme respectivement. Le polylogarithme apparaît aussi dans la forme fermée de l'intégrale de la distribution de Fermi-Dirac et la distribution de Bose-Einstein et est quelquefois connue comme l'intégrale de Fermi-Dirac ou l'intégrale de Bose-Einstein.
Nombre harmoniqueEn mathématiques, le n-ième nombre harmonique est la somme des inverses des n premiers entiers naturels non nuls : Ce nombre rationnel est aussi égal à n fois l'inverse de la moyenne harmonique de ces entiers, ainsi qu'à la n-ième somme partielle de la série harmonique. Les nombres harmoniques ont été étudiés pendant l'Antiquité et sont importants dans plusieurs domaines de la théorie des nombres. Ils apparaissent dans de nombreux problèmes d'analyse combinatoire.
Polynôme de BernoulliEn mathématiques, les polynômes de Bernoulli apparaissent dans l'étude de beaucoup de fonctions spéciales et en particulier, la fonction zêta de Riemann ; des polynômes analogues, correspondant à une fonction génératrice voisine, sont connus sous le nom de polynômes d'Euler. Les polynômes de Bernoulli sont l'unique suite de polynômes telle que : La fonction génératrice pour les polynômes de Bernoulli est La fonction génératrice pour les polynômes d'Euler est Les nombres de Bernoulli sont donnés par .
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.