Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Explore les représentations de la symétrie C3v, des tables de caractères, des symboles Mulliken et des applications de la théorie des groupes dans les fonctions propres.
Explore la théorie des groupes en physique quantique, en mettant l'accent sur les représentations réductibles et irréductibles, les lois de conservation et les propriétés de groupe.
Explore la chiralité, la complétude de groupe, les groupes abéliens, les classes conjuguées et les groupes isomorphes en symétrie et en théorie des groupes.