Graphe nulEn mathématiques, plus spécialement en théorie des graphes, un graphe nul désigne soit un graphe d'ordre zéro (i.e. sans sommets), soit un graphe avec sommets mais sans arêtes (on parle aussi dans ce dernier cas de graphe vide). Lorsqu'un graphe nul contient des sommets tous isolés, on le note où représente le nombre de sommets du graphe. La taille (i.e. le nombre d'arêtes ou d'arcs) d'un graphe nul est toujours zéro. L'ordre (i.e. le nombre de sommets) d'un graphe nul n'est pas nécessairement zéro.
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Graphe régulierEn théorie des graphes, un graphe régulier est un graphe où tous les sommets ont le même nombre de voisins, c'est-à-dire le même degré ou valence. Un graphe régulier dont les sommets sont de degré est appelé un graphe -régulier ou graphe régulier de degré . Un graphe 0-régulier est un ensemble de sommets déconnectés; un graphe 1-régulier a un nombre pair de sommets et est un ensemble d'arêtes déconnectées ou couplage; enfin, un graphe 2-régulier est un ensemble de cycles déconnectés.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Graphe complémentaireframe|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Cycle (théorie des graphes)thumb|Dans ce graphe, le cycle rouge est élémentaire. Le cycle bleu ne l'est pas. La chaine verte n'est pas fermée et ne forme donc pas un cycle. Dans un graphe non orienté, un cycle est une suite d'arêtes consécutives distinctes (chaine simple) dont les deux sommets extrémités sont identiques. Dans les graphes orientés, la notion équivalente est celle de circuit, même si on parle parfois aussi de cycle (par exemple dans l'expression graphe acyclique orienté).
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Eulerian pathIn graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: Given the graph in the image, is it possible to construct a path (or a cycle; i.
Graphe circulantEn théorie des graphes, un graphe circulant est un graphe non orienté sur lequel agit un groupe cyclique d'automorphismes de graphes qui en fait un graphe sommet-transitif. On trouve aussi l'appellation graphe cyclique mais ce terme aussi d'autres significations. Il y a plusieurs manières équivalentes de définir les graphes circulants ; un graphe est circulant lorsque le groupe d'automorphisme du graphe admet un sous-groupe cyclique qui agit de manière transitive sur les sommets du graphe.