Méthode des tableauxvignette|200px|Représentation graphique d'un tableau propositionnel partiellement construit En théorie de la démonstration, les tableaux sémantiques sont une méthode de résolution du problème de la décision pour le calcul des propositions et les logiques apparentées, ainsi qu'une méthode de preuve pour la logique du premier ordre. La méthode des tableaux peut également déterminer la satisfiabilité des ensembles finis de formules de diverses logiques. C'est la méthode de preuve la plus populaire pour les logiques modales (Girle 2000).
Gentzen's consistency proofGentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
Règle de résolutionEn logique mathématique, la règle de résolution ou principe de résolution de Robinson est une règle d'inférence logique qui généralise le modus ponens. Cette règle est principalement utilisée dans les systèmes de preuve automatiques, elle est à la base du langage de programmation logique Prolog. La règle du modus ponens s'écrit et se lit : de p et de "p implique q", je déduis q. On peut réécrire l'implication "p implique q" comme "p est faux ou q est vraie". Ainsi, la règle du modus ponens s'écrit .
Hilbert's second problemIn mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that the arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in , which include a second order completeness axiom. In the 1930s, Kurt Gödel and Gerhard Gentzen proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.
Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Calcul des séquentsEn logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.
Gerhard GentzenGerhard Gentzen ( à Greifswald - à Prague) est un mathématicien et logicien allemand, dont l'œuvre est fondamentale en théorie de la démonstration. Il fut l’un des étudiants de Weyl à l'université de Göttingen de 1929 à 1933. Il est mort dans un camp de prisonniers de guerre en 1945, après avoir été arrêté par les soviets à cause de ses loyautés nazies. Gentzen est un élève de Paul Bernays à l'université de Göttingen. Mais ce dernier ayant été renvoyé comme « non- aryen » en , Hermann Weyl devient formellement son directeur de thèse.
Logique linéairevignette|Arbre de résolution linéaire En logique mathématique et plus précisément en théorie de la démonstration, la logique linéaire est un système formel inventé par le logicien Jean-Yves Girard en 1987. Du point de vue logique, la logique linéaire décompose et analyse les logiques classique et intuitionniste. Du point de vue calculatoire, elle est un système de type pour le lambda-calcul permettant de spécifier certains usages des ressources. La logique classique n'étudie pas les aspects les plus élémentaires du raisonnement.
Règle d'inférenceDans un système logique, les régles d'inférence sont les règles qui fondent le processus de déduction, de dérivation ou de démonstration. L'application des règles sur les axiomes du système permet d'en démontrer les théorèmes. Une règle d'inférence est une fonction qui prend un -uplet de formules et rend une formule. Les formules arguments sont appelées « les prémisses » et la formule retournée est appelée la « conclusion ».
Cohérence (logique)En logique mathématique, la cohérence, ou consistance, d'une théorie axiomatique peut se définir de deux façons, soit par référence à la déduction : il n'est pas possible de tout démontrer à partir des axiomes de la théorie, soit par référence à la sémantique de la théorie : celle-ci possède des réalisations qui lui donnent un sens. La première définition est syntaxique au sens où elle utilise des déductions ou démonstrations, qui sont des objets finis.