Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.
Explore la découverte primée du prix Nobel des méthodes de réplique et de cavité dans des systèmes complexes, en se concentrant sur le modèle d'énergie aléatoire et l'application de la théorie des probabilités.
Explore la modélisation stochastique des capteurs d'inertie pour une fusion optimale avec d'autres appareils, en mettant l'accent sur la stochastique précise des capteurs pour des solutions de navigation améliorées.
Explore l'application de l'apprentissage de renforcement pour enseigner à Pacman à jouer de façon autonome en utilisant les méthodes de gradient de politique et les processus de décision Markov.
Couvre les bases du calcul quantique, en se concentrant sur NISQ et IBM Q, y compris les qubits, la superposition et le traitement de l'information quantique.