Théorème de FejérEn mathématiques, et plus précisément en analyse, le théorème de Fejér est un des principaux résultats de la théorie des séries de Fourier. Il donne des propriétés de convergence très générales pour la série de Fourier, dès lors qu'on utilise le procédé de sommation de Cesàro. Il a été démontré par le mathématicien Lipót Fejér en 1900. Théorème de Fejér : Soit f une fonction localement intégrable et 2π-périodique. On note le terme d'ordre n de sa série de Fourier, avec puis les moyennes de Cesàro successives des termes de la série de Fourier.
Phénomène de GibbsEn mathématiques, lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux. Le phénomène fut mis pour la première fois en évidence en 1848 par Henry Wilbraham, mais cette découverte ne connut guère d'écho.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Théorème de Banach-SteinhausLe théorème de Banach-Steinhaus fait partie, au même titre que le théorème de Hahn-Banach et le théorème de Banach-Schauder, des résultats fondamentaux de l'analyse fonctionnelle. Publié initialement par Stefan Banach et Hugo Steinhaus en 1927, il a aussi été prouvé indépendamment par Hans Hahn, et a connu depuis de nombreuses généralisations. La formulation originelle de ce théorème est la suivante : Lorsque E est un espace de Banach (donc de Baire), il suffit donc que la famille soit simplement bornée sur une partie comaigre, comme E lui-même.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Fonction périodiqueEn mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.