Concepts associés (10)
Exponential dispersion model
In probability and statistics, the class of exponential dispersion models (EDM) is a set of probability distributions that represents a generalisation of the natural exponential family. Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference. There are two versions to formulate an exponential dispersion model.
Tweedie distribution
In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
Loi de Poisson
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Famille exponentielle
En théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
Loi binomiale négative
En probabilité et en statistiques, une loi binomiale négative est la distribution de probabilité discrète du nombre d'échecs dans une série d'épreuves de Bernoulli indépendantes et identiquement distribuées jusqu'à avoir un nombre fixe n de succès. Par exemple, c'est la distribution de probabilité du nombre de piles obtenus dans une série de pile ou face jusqu'à avoir vu n faces. Plus précisément, elle décrit la situation suivante : une expérience consiste en une série de tirages indépendants, donnant un succès avec probabilité p (constante durant toute l'expérience) et un échec avec une probabilité complémentaire 1-p.
Loi Gamma
En théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Modèle linéaire généralisé
En statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Fonction génératrice des moments
En théorie des probabilités et en statistique, la fonction génératrice des moments d'une variable aléatoire est la fonction M définie par pour tout réel t tel que cette espérance existe. Cette fonction, comme son nom l'indique, est utilisée afin d'engendrer les moments associés à la distribution de probabilités de la variable aléatoire .
Fonction de Pearson
Les fonctions de Pearson ont été créées pour représenter des distributions unimodales. Il en existe douze. Elles ont été inventées par Karl Pearson à la fin du et au début du . Le système de Pearson a été originellement conçu afin de modéliser des observations visiblement asymétriques. Les méthodes pour ajuster un modèle théorique aux deux premiers cumulants ou moments de données observées : toute distribution peut être étendue directement une famille de distributions adaptée.
Conjugate prior
In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.