Déplacez-vous dans les tests d'hypothèses, couvrant les statistiques d'essais, les régions critiques, les fonctions de puissance, les valeurs p, les tests multiples et les statistiques non paramétriques.
Explore les tests t, les intervalles de confiance, l'ANOVA et les tests d'hypothèse dans les statistiques, en soulignant l'importance d'éviter les fausses découvertes et de comprendre la logique derrière les tests statistiques.
Explore les défis que posent les essais multiples dans l'analyse des données génomiques, y compris le contrôle des taux d'erreur, les valeurs de p ajustées, les tests de permutation et les pièges dans les essais d'hypothèses.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Explore les défis de sélection de la stratégie, l'évaluation de la performance et les tests statistiques en finance, en soulignant l'importance des portefeuilles de stratégies.
Explore GLM, tests statistiques, signaux neuraux et traitement des signaux, couvrant les contrastes, les comparaisons multiples, les tests F, la connectivité fonctionnelle, l'IRMf à l'état de repos et les méthodes multivariées.
Couvre la théorie des probabilités de base, la théorie de la détection des signaux, les statistiques et les méta-statistiques, expliquant la taille des effets, la puissance et les tests d'hypothèses.