Centre du triangleEn géométrie plane, la notion de centre du triangle est une notion qui généralise celle de centre d'un carré ou d'un cercle. Certains points remarquables du triangle, comme le centre de gravité, le centre du cercle circonscrit, le centre du cercle inscrit et l'orthocentre sont connus depuis la Grèce antique et constructibles simplement. Chacun de ces centres classiques a la propriété d'être invariant (plus précisément équivariant) par similitudes.
Splitter (geometry)In Euclidean geometry, a splitter is a line segment through one of the vertices of a triangle (that is, a cevian) that bisects the perimeter of the triangle. They are not to be confused with cleavers, which also bisect the perimeter but instead emanate from the midpoint of one of the triangle's sides. The opposite endpoint of a splitter to the chosen triangle vertex lies at the point on the triangle's side where one of the excircles of the triangle is tangent to that side. This point is also called a splitting point of the triangle.
Coordonnées trilinéairesEn géométrie, les coordonnées trilinéaires d'un point relativement à un triangle donné, notées (x : y : z) sont, à une constante multiplicative strictement positive près, les distances algébriques relativement aux côtés (étendus) du triangle. Pour un triangle ABC, le rapport x / y est le rapport des distances algébriques du point aux côtés (BC) et (AC) respectivement et ainsi de suite par permutation sur A, B, C.
Triangle de Nagelvignette|300x300px En géométrie euclidienne, le triangle de Nagel d'un triangle est le triangle dont les sommets sont les points de contact des cercles exinscrits avec les côtés. Les distances des points de contact aux sommets sont indiquées sur la figure, avec les longueurs des côtés et le demi-périmètre . Les coordonnées barycentriques du sommet sur le côté sont donc . On obtient les autres par permutations. Les céviennes joignant les sommets du triangle aux points de contact des cercles exinscrits avec les côtés concourent au point de Nagel .
Mandart inellipseIn geometry, the Mandart inellipse of a triangle is an ellipse inscribed within the triangle, tangent to its sides at the contact points of its excircles (which are also the vertices of the extouch triangle and the endpoints of the splitters). The Mandart inellipse is named after H. Mandart, who studied it in two papers published in the late 19th century. As an inconic, the Mandart inellipse is described by the parameters where a, b, and c are sides of the given triangle.
SemiperimeterIn geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
Medial triangleIn Euclidean geometry, the medial triangle or midpoint triangle of a triangle △ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of △ABC. Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle.
IncenterIn geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.
Coniques circonscrites et inscrites à un triangleEn géométrie du triangle, une conique circonscrite est une conique passant par les trois sommets du triangle et une conique inscrite est une conique tangente aux côtés, éventuellement étendus. On note a = BC, b = CA, c = AB les longueurs des côtés d'un triangle ABC. En coordonnées trilinéaires relativement au triangle ABC, une conique circonscrite à ce triangle est l'ensemble des points M de coordonnées vérifiant l'équation générale : pour un point de coordonnées trilinéaires .
Cercles inscrit et exinscrits d'un triangleÉtant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC. Bissectrice Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).