Roger CotesRoger Cotes (, Burbage dans le Leicestershire – à Cambridge), mathématicien anglais. Un proche d’Isaac Newton avec qui il partage la découverte de la méthode de Newton-Cotes en analyse numérique, qui étend de manière générale la méthode des trapèzes et la méthode de Simpson pour le calcul des intégrales. Professeur plumien d'astronomie et de physique expérimentale à l'université de Cambridge. Roger Cotes est devenu membre de la Royal Society le . Sa Correspondance avec Isaac Newton a été publiée à Londres, en 1853.
Cis (mathematics)is a mathematical notation defined by cis x = cos x + i sin x, where cos is the cosine function, i is the imaginary unit and sin is the sine function. The notation is less commonly used in mathematics than Euler's formula, eix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries. The cis notation is a shorthand for the combination of functions on the right-hand side of Euler's formula: where i2 = −1. So, i.e.
Atan2thumb|Courbe de en fonction de . En trigonométrie, la fonction atan2 à deux arguments est une variante de la fonction arc tangente. Pour tous arguments réels x et y non nuls, est l'angle en radians entre la partie positive de l'axe des abscisses d'un plan, et le point de ce plan de coordonnées (x, y). Cet angle est positif pour les angles dans le sens anti-horaire dit sens trigonométrique (demi-plan supérieur, y > 0) et négatif dans l'autre (demi-plan inférieur, y < 0).
Règle de d'Alembertvignette|Jean Le Rond d'Alembert, mathématicien français. La règle de d'Alembert (ou critère de d'Alembert), doit son nom au mathématicien français Jean le Rond d'Alembert. C'est un test de convergence pour une série à termes positifs. Dans certains cas, elle permet d'établir la convergence absolue d'une série à termes complexes ou vectoriels, ou au contraire sa divergence. Soit (u) une suite de réels strictement positifs. On note et les limites inférieure et supérieure des quotients successifs : Si , alors la série de terme général u converge.
Identité d'EulerEn mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : où la base e du logarithme naturel représente l'analyse, l'unité imaginaire i représente l'algèbre, la constante d'Archimède π représente la géométrie, . Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.
Nombre positifUn nombre positif est un nombre qui est supérieur à zéro, par exemple 3 ou e. En dehors des textes mathématiques, lorsqu'on parle de nombres positifs ou négatifs, le nombre zéro est généralement exclu. Ainsi le dictionnaire Lexis précise : . L'Académie française, dans la neuvième édition de son dictionnaire précise quant à elle qu'un nombre positif est un nombre . En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif.
Characterizations of the exponential functionIn mathematics, the exponential function can be characterized in many ways. The following characterizations (definitions) are most common. This article discusses why each characterization makes sense, and why the characterizations are independent of and equivalent to each other. As a special case of these considerations, it will be demonstrated that the three most common definitions given for the mathematical constant e are equivalent to each other.
Proofs of trigonometric identitiesThere are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of right triangles. The proofs given in this article use this definition, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
Identité trigonométrique pythagoricienneL'identité trigonométrique pythagoricienne exprime le théorème de Pythagore en termes de fonctions trigonométriques. Avec les formules de somme d'angles, c'est l'une des relations fondamentales entre les fonctions sinus et cosinus. Cette relation entre le sinus et le cosinus est parfois appelée l'identité trigonométrique fondamentale de Pythagore. Cette identité trigonométrique est donnée par la formule : où signifie .