Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
L'identité trigonométrique pythagoricienne exprime le théorème de Pythagore en termes de fonctions trigonométriques. Avec les formules de somme d'angles, c'est l'une des relations fondamentales entre les fonctions sinus et cosinus. Cette relation entre le sinus et le cosinus est parfois appelée l'identité trigonométrique fondamentale de Pythagore. Cette identité trigonométrique est donnée par la formule : où signifie . Si la longueur de l'hypoténuse d'un triangle rectangle est égale à 1, alors la longueur de l'un des deux côtés est le sinus de l'angle opposé et est également le cosinus de l'angle aigu adjacent. Par conséquent, cette identité trigonométrique découle du théorème de Pythagore. vignette|Triangles rectangles similaires montrant le sinus et le cosinus de l'angle θ. Tous les triangles semblables ont la propriété que si nous sélectionnons le même angle dans chacun d'eux, le rapport des deux côtés définissant l'angle est le même quel que soit le triangle similaire choisi, indépendamment de sa taille réelle : les rapports dépendent des trois angles, pas les longueurs des côtés. Ainsi, le rapport de son côté horizontal à son hypoténuse est le même, à savoir cos θ. Les définitions élémentaires des fonctions sinus et cosinus en termes de côtés d'un triangle rectangle sont : L'identité pythagoricienne suit en mettant au carré les deux définitions ci-dessus, et en les additionnant, le côté gauche de l'identité devient alors qui, par le théorème de Pythagore, est égal à 1. Cette définition est valable pour tous les angles, en raison de la définition de définition x= cos θ et y= sin θ pour le cercle unité, ainsi x= c cos θ et y= c sin θ pour un cercle de rayon c, avec x=a et y=b. Alternativement, les identités de symétrie trigonométrique, et les changements et la périodicité peuvent être utilisés. Par les identités de périodicité on peut dire que si la formule est vraie pour -π < θ ≤ π alors elle est vraie pour tout θ réel. Ensuite, nous prouvons l'encadrement π/2 < θ ≤ π, pour ce faire, nous poserons t = θ - π/2.
Jean-Pierre Hubaux, Mathias Jacques Jean-Marc Humbert, Amalio Telenti, Erman Ayday
Fernando Porté Agel, Giacomo Valerio Iungo, Fernando Carbajo Fuertes