En mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes.
Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome.
Si l'équation de la contrainte holonome dépend du temps, (), elle est dite rhéonome. Si elle n'en dépend pas, (, elle est dite scléronome.
Mathématiquement, une contrainte holonome définit une variété fermée plongée dans l'espace dans laquelle évolue le système de particules. La dimension de cette variété est le nombre de degrés de liberté du système, i.e. le nombre de coordonnées indépendantes à considérer pour le décrire. En général K contraintes holonomes enlèvent K degrés de liberté, mais, suivant les équations et leur indépendance, il peut en être autrement (on peut ramener K équations indépendantes à une seule équation si on le souhaite ; ce sujet dans toute sa généralité relève de la géométrie algébrique).
Les contraintes d'un corps supposé rigide sont holonomes scléronomes : pour deux particules quelconques numérotées , il existe une constante telle que l'on doit avoir .
Le système étudié peut être décrit par d'autres variables que les positions spatiales de ses N points : angles, positions relatives, etc. Dans ce cas, les nouvelles coordonnées utilisées sont appelées « coordonnées généralisées » ; elles sont souvent notées et sont au nombre de . On a , et la contrainte holonome peut alors s'écrire . Le système des N points, évoluant dans l'espace de dimension 3, peut alors être considéré comme décrit dans un espace de dimension n.
Un système de N corps ponctuels non soumis à une contrainte holonome a 3N degrés de liberté et nécessite donc 3N variables réelles indépendantes pour être décrit (par exemple : les 3N coordonnées des N corps).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
Les étudiants connaissent les techniques de calculs et de réalisation des fondation d'ouvrages et de soutènement des en terrain meuble.
Ils savent
déterminer les facteurs influençant un projet géot
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
vignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
La mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
En physique et plus particulièrement en mécanique classique et en mécanique statistique, l'espace de configuration d'un système physique est l'ensemble des positions possibles que ce système peut atteindre. Un espace de configuration a généralement une structure naturelle de variété et peut être étudié d'un point de vue géométrique ou topologique. L'exemple le plus simple est celui du système composé d'une unique particule se déplaçant dans un plan euclidien.
Explore le principe d'Alembert et les contraintes parfaites dans les systèmes mécaniques, démontrant leur application à travers des exemples comme le pendule simple.
The revelation of mechanism bifurcation is essential in the design and analysis of reconfigurable mechanisms. The first- and second-order based methods have successfully revealed the bifurcation of mechanisms. However, they fail in the novel Schatz-inspire ...
In recent years, many approaches to visual-inertial odometry (VIO) have become available. However, they neither exploit the robot's dynamics and known actuation inputs, nor differentiate between the desired motion due to actuation and the unwanted perturba ...
In several domains of physics, including first principle simulations and classical models for polarizable systems, the minimization of an energy function with respect to a set of auxiliary variables must be performed to define the dynamics of physical degr ...