Couvre le rôle des symétries et des groupes dans la mécanique quantique, en se concentrant sur SU2 et SU3, leurs propriétés et leurs implications pour les théories physiques.
Explore la compacité, la continuité et les espaces de quotient en topologie, en mettant l'accent sur la topologie des lignes en R2 et les propriétés des ensembles compacts.
Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.