Couvre l'adjonction entre les ensembles simpliciaux et les catégories enrichies en simpliciation, y compris la préservation des inclusions et la construction des catégories homotopiques.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.
Explore les transformations naturelles entre les functeurs, en mettant l'accent sur leurs propriétés de préservation de la composition et leur signification dans la théorie des catégories.