Agents intelligents : prendre des décisions et planifier
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'IA socialement consciente pour la mobilité des derniers milles, se concentrant sur la compréhension des étiquettes sociales, l'anticipation des comportements et la prévision des mouvements de foule.
Explore l'intelligence, la perception et les applications de l'IA dans les véhicules autonomes, en mettant l'accent sur la pensée rationnelle et l'intelligence sociale.
Explore les principes fondamentaux de la recherche scientifique, de l'impact des ordinateurs, des algorithmes numériques et de l'apprentissage profond dans la résolution de problèmes de haute dimension.
Explore les défis de l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la modélisation du comportement social et la prévision de trajectoire réalisable.
Explore la coordination et l'apprentissage dans des systèmes multiagents distribués, couvrant les lois sociales, l'échange de tâches, la satisfaction des contraintes et les algorithmes de coordination.
Explore la perspective évolutive de la surprise, de la curiosité et de la récompense, en mettant l'accent sur le rôle des signaux de récompense primaires et secondaires.
Explore des modèles générateurs pour la prévision de trajectoires dans les véhicules autonomes, y compris des modèles discriminatifs vs générateurs, VAES, GANS, et des études de cas.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.