Explore les réseaux dirigés avec des relations asymétriques et des hypergraphes qui généralisent les graphiques en permettant aux bords de connecter n'importe quel sous-ensemble de nœuds.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.
Explore les séquences de tours, les homomorphismes et leurs applications en topologie, y compris le calcul de l'homologie et la construction de télescopes.