Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.
Se penche sur la dérivation du modèle logit, soulignant limportance de lhypothèse dindépendance et de la normalisation des paramètres pendant lestimation.
Couvre la théorie derrière l'estimation maximale de la vraisemblance, en discutant des propriétés et des applications dans le choix binaire et des modèles multiréponses ordonnées.
Explore l'application de Maximum Likelihood Estimation dans les modèles à choix binaire, couvrant les modèles probit et logit, la représentation des variables latentes et les tests de spécification.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Explique la dérivation du modèle logit dans les modèles de choix, couvrant les termes d'erreur, les ensembles de choix et les conditions de disponibilité.
Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.