Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.
Couvre les bases de l'analyse numérique et des méthodes de calcul utilisant Python, en se concentrant sur les algorithmes et les applications pratiques en mathématiques.