Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Couvre les principes fondamentaux de l'analyse complexe, en se concentrant sur les fonctions complexes, leurs propriétés et leurs applications dans la résolution d'équations différentielles.
Discute des transformations de Laplace et de Fourier, en se concentrant sur leurs formules d'inversion et leurs applications dans la résolution d'équations différentielles.
Explore le contrôle des systèmes dynamiques, la réponse impulsionnelle, la transformée de Laplace et la transformée de Fourier pour résoudre les équations différentielles.