Explore la construction d'objets cylindres dans des complexes de chaîne sur un champ, en mettant l'accent sur les complexes d'homotopie gauche et de chaîne d'intervalle.
Fournit un aperçu des propriétés de levage dans les catégories de modèles, en se concentrant sur leurs définitions et leurs implications pour les morphismes et les diagrammes commutatifs.
Se concentre sur la preuve de la construction de la catégorie d'homotopie et de ses propriétés, y compris la préservation de la composition et de l'unicité des foncteurs.
Couvre le calcul des nerfs et la réalisation géométrique dans des ensembles simpliciaux, ainsi que des foncteurs entrant et sortant de la catégorie des ensembles simpliciaux.