Introduit des concepts clés dans l'analyse numérique et l'optimisation, en se concentrant sur les distances, les sous-ensembles et leurs propriétés dans Rn.
Couvre une récapitulation de l'analyse I et s'inscrit dans le concept d'ensembles ouverts en R^n, soulignant leur importance dans l'analyse mathématique.
Couvre le calcul intégral multivariable, y compris les cuboïdes rectangulaires, les subdivisions, les sommes du Douboux, le théorème de Fubini et l'intégration sur des ensembles délimités.