Couvre le concept de couverture pour les programmes linéaires et la méthode simplex, en se concentrant sur la réduction des coûts et la recherche de solutions optimales.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Explore les méthodes de pénalité quadratique pour les problèmes d'optimisation non convexe-concave et introduit des algorithmes primal-dual avec des fonctions de pénalité.