Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Couvre la théorie des méthodes numériques pour l'estimation des fréquences sur les signaux déterministes, y compris la série et la transformation de Fourier, la transformation de Fourier discret et le théorème d'échantillonnage.
Explore la résolution des équations différentielles à l'aide de données périodiques à l'aide de la série de Fourier et approfondit l'équation de la chaleur dans R.
Couvre l'approximation numérique des PDE, y compris les équations de Poisson et de la chaleur, les phénomènes de transport et les limites incompressibles.
Explore les méthodes numériques pour résoudre les équations différentielles partielles en calculant, en soulignant leur importance dans la prédiction de divers phénomènes.