Explore la motivation derrière les séries et les transformations de Fourier, leurs principes fondamentaux et leurs applications dans la résolution d'équations différentielles.
Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.
Explore les propriétés de la transformée de Fourier avec des dérivés et introduit la transformée de Laplace pour la transformation du signal et la résolution des équations différentielles.
Explore les propriétés spectrales des systèmes illimités et bornés en utilisant les méthodes de Fourier et souligne l'importance de choisir la représentation correcte pour différentes conditions aux limites.