Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Explore les schémas implicites dans l'analyse numérique, en mettant l'accent sur les propriétés de stabilité et de convergence dans la résolution des équations différentielles.
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.