Explore les courbes dans le plan orienté, en discutant de l'orientation, des espaces vectoriels, des relations d'équivalence et de la courbure des courbes régulières.
Explore les espaces d'interpolation dans les espaces de Banach, en mettant l'accent sur de véritables espaces d'interpolation continue et la méthode K.
Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.
Couvre les produits scalaires, les vecteurs orthogonaux, les normes et les projections dans les espaces vectoriels, en mettant l'accent sur les familles orthonormales de vecteurs.