Explorer l'interprétation des modèles de régression logistique, l'estimation des paramètres et la comparaison des modèles à l'aide de tests de rapport de probabilité.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Couvre l'analyse des données jacamar, les modèles de données sur le tabagisme et les défis liés aux modèles log-linéaires dans les données sur les déficiences visuelles.
Explore la régression logistique pour la classification binaire, couvrant la modélisation des probabilités, les méthodes d'optimisation et les techniques de régularisation.
Explore l'application de Maximum Likelihood Estimation dans les modèles à choix binaire, couvrant les modèles probit et logit, la représentation des variables latentes et les tests de spécification.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.