Explore la complexité des calculs matriciels, en mettant l'accent sur les valeurs propres et les vecteurs propres des matrices symétriques et les défis de leur calcul.
Explore la diagonalisation des matrices symétriques à l'aide de vecteurs propres et de valeurs propres, en mettant l'accent sur l'orthogonalité et les valeurs propres réelles.
Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.