Connectivité dynamique dans l'IRMf: Méthodes et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
Explore l'intégration de la connectivité cérébrale pour décoder et interpréter l'activité cérébrale à l'aide du traitement des signaux graphiques et des réseaux résiduels spectraux.
Explore l'importance de l'hippocampe dans la mémoire et la navigation spatiale, en discutant de sa structure unique et de ses implications pour la recherche plus large sur le cerveau.
Explore les progrès de l'IRMf de la moelle épinière à 7 Tesla, en soulignant son importance dans la compréhension des pathologies du système nerveux central.
Introduit les bases de la connectomique cérébrale, y compris la terminologie, le prétraitement des données, l'IRM fonctionnelle, les mesures de connectivité et la structure modulaire.
Explore la vue d'ensemble, la justification et les stratégies de la neuroscience de simulation, en mettant l'accent sur les défis de la reconstruction et de la simulation du cerveau.
Déplacez-vous dans le Graph Signal Processing dans les réseaux du cerveau, mettant l'accent sur l'intégration de la structure du cerveau et de la fonction par des techniques innovantes.