Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.
Couvre les outils de traitement statistique des signaux pour les communications sans fil, y compris le spectre de diffusion, l'analyse spectrale, les communications à bande ultra large et l'analyse de la variabilité de la fréquence cardiaque.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Couvre l'estimation multi-déformation et paramétrique dans l'analyse des séries temporelles, y compris l'estimation spectrale et l'ajustement du modèle AR.
Explore l'analyse des données neurophysiologiques, couvrant l'identification AP, les taux de tir, l'activité sous le seuil, l'analyse spectrale FFT et l'analyse déclenchée par des événements à l'aide de MATLAB.