Couvre les fonctions harmoniques, l'opérateur laplacien, les problèmes de Dirichlet et de Robin et les fonctions sous-harmoniques dans les équations aux dérivées partielles.
Explore les équations différentielles partielles linéaires, les PDE elliptiques, l'équation de Laplace, les conditions limites et les solutions classiques.
Explore les espaces de distribution et d'interpolation, les opérateurs différentiels, la transformée de Fourier, l'espace de Schwartz, les solutions fondamentales, la transformée de Farrier et la continuité uniforme.
Couvre l'analyse et la solution des équations de diffusion en utilisant l'approche de fonction de Green et discute des conditions aux limites et de l'analyse dimensionnelle.