Discute des principes fondamentaux de la probabilité et des processus stochastiques, en se concentrant sur les variables aléatoires, leurs propriétés et leurs applications dans le traitement statistique du signal.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explore le traitement adaptatif du signal, la descente de gradient et l'algorithme LMS pour un filtrage efficace et un entraînement au réseau neuronal.