Couvre les fondamentaux de la théorie des graphiques, y compris les sommets, les bords, les degrés, les promenades, les graphiques connectés, les cycles et les arbres, en mettant l'accent sur le nombre de bords dans un arbre.
Présente les arbres couvrants dans les graphiques et le problème de l'arbre de couverture minimum, explorant des algorithmes efficaces pour une prise de décision optimale.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.