Couvre la régression linéaire, la régularisation, les problèmes inverses, la tomographie par rayons X, la reconstruction d'images, l'inférence de données et l'intensité du détecteur.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.