Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les sources d'injustice dans l'apprentissage automatique, l'importance des mesures d'équité et l'évaluation des prédictions des modèles à l'aide de diverses mesures d'équité.
Explore les risques liés à la protection de la vie privée dans la publication des données, les tentatives ratées de désidentification et l'utilisation de données synthétiques pour la protection de la vie privée.
Se penche sur la physialisation des données, l'expressivité, la visualisation féministe et l'équilibre entre l'exploration et l'explication de la visualisation des données.
Explore la préparation des données pour l'apprentissage automatique, en mettant l'accent sur la conversion numérique et les techniques efficaces de visualisation des données.
Explore l'importance de la causalité pour l'apprentissage machine robuste, couvrant les ensembles de données idéaux, les problèmes de données manquants, les modèles graphiques et les modèles d'interférence.
Explore l'appropriation spatiale et la dynamique de l'environnement bâti, en mettant l'accent sur le travail de Renate Albrecher et les défis de la marche urbaine.
Explore les dynamiques de genre et de classe dans l'appropriation du logement, en soulignant l'importance d'écouter les perspectives des femmes et de repenser les solutions spatiales aux problèmes sociaux.