Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore les séquences de tours, les homomorphismes et leurs applications en topologie, y compris le calcul de l'homologie et la construction de télescopes.
Couvre l'homologie avec les coefficients, introduisant le concept de définition des groupes d'homologie par rapport aux groupes abélisques arbitraires.