Explore les modèles linéaires, la régression logistique, la descente en gradient et la régression logistique multi-classes avec des applications pratiques et des exemples.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Introduit une régression linéaire et logistique, couvrant les modèles paramétriques, la prédiction multi-sorties, la non-linéarité, la descente de gradient et les applications de classification.
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Couvre les modèles linéaires, y compris la régression, les dérivés, les gradients, les hyperplans et la transition de classification, en mettant laccent sur la minimisation des risques et des mesures dévaluation.