Explore la transformation de base, les valeurs propres et les opérateurs linéaires dans les espaces intérieurs des produits, en soulignant leur importance dans la mécanique quantique.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Discute des transformations de Laplace et de Fourier, en se concentrant sur leurs formules d'inversion et leurs applications dans la résolution d'équations différentielles.
Explore le contrôle des systèmes dynamiques, la réponse impulsionnelle, la transformée de Laplace et la transformée de Fourier pour résoudre les équations différentielles.