Déplacez-vous dans les tests d'hypothèses, couvrant les statistiques d'essais, les régions critiques, les fonctions de puissance, les valeurs p, les tests multiples et les statistiques non paramétriques.
Explore les défis que posent les essais multiples dans l'analyse des données génomiques, y compris le contrôle des taux d'erreur, les valeurs de p ajustées, les tests de permutation et les pièges dans les essais d'hypothèses.
Explore l'analyse des composantes principales, la réduction de la dimensionnalité, l'évaluation de la qualité des données et le contrôle du taux d'erreur.
Explore les tests t, les intervalles de confiance, l'ANOVA et les tests d'hypothèse dans les statistiques, en soulignant l'importance d'éviter les fausses découvertes et de comprendre la logique derrière les tests statistiques.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.