Problèmes d'optimisation : recherche des voies et affectation des portefeuilles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la récapitulation de Support Vector Regression avec un accent sur l'optimisation convexe et son équivalence à la régression du processus gaussien.
Couvre les concepts fondamentaux de l'optimisation et de la recherche opérationnelle, en explorant des exemples du monde réel et des sujets clés sur un semestre.
Explore la dualité dans la programmation linéaire, la dualité forte, le relâchement complémentaire et l'interprétation économique des variables doubles en tant que prix.
Explore l'optimisation convexe, en soulignant l'importance de minimiser les fonctions dans un ensemble convexe et l'importance des processus continus dans l'étude des taux de convergence.
Explore l'apprentissage machine contradictoire, couvrant la génération d'exemples contradictoires, les défis de robustesse et des techniques telles que la méthode Fast Gradient Sign.
Explore les sous-gradients dans les fonctions convexes, mettant l'accent sur les scénarios et les propriétés des subdifférentiels non dissociables mais convexes.