Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles paramétriques, les techniques d'estimation, les modèles de régression et les classificateurs basés sur les scores dans l'analyse des données.
Couvre le cours de simulations stochastiques, le modèle de file d'attente G/G/1, la finance computationnelle, les statistiques, la physique et l'inférence bayésienne.
Explore l'application de la physique statistique dans les problèmes de calcul, couvrant des sujets tels que l'inférence bayésienne, les modèles de verre de spin de champ moyen, et la détection comprimée.
Explore l'estimation non paramétrique à l'aide d'estimateurs de densité du noyau pour estimer les fonctions et les paramètres de distribution, en mettant l'accent sur la sélection de la bande passante pour une précision optimale.
Explore la cohérence prédictive dans les systèmes de prévision séquentielle, en mettant l'accent sur l'utilité de la prédiction sur l'estimation et sur l'importance des approches préalables.
Couvre les bases des mesures de probabilité, des propriétés, des exemples, de la mesure de Lebesgue et de la terminologie liée aux espaces et aux événements de probabilité.
Explore les méthodes d'estimation de la distribution, les fonctions de remise en forme et l'importance de choisir le bon estimateur pour obtenir des résultats précis.