Traitement d'image I : Détection des bords et analyse de texture
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Couvre la détection des bords et des contours dans les images, y compris les méthodes basées sur les gradients, l'opérateur laplacien, et des méthodes plus complexes.
Explore les défis et les solutions pour gérer la dose d'électrons en microscopie, en soulignant l'importance d'un suivi et d'une analyse précis des doses.
Introduit des bases de traitement d'image en Python, couvrant la manipulation, la conversion à l'échelle grise, la détection des bords et la convolution avec les noyaux.
Explore la moyenne de voisinage, le lissage gaussien, le filtrage médian, l'amélioration du contraste et la détection des bords dans le traitement d'image.