Couvre les propriétés de la carte exponentielle dans les groupes de Lie et leurs algèbres, y compris la douceur et la relation entre les sous-groupes et les algèbres.
Explore le théorème de Wedderburn, les algèbres de groupe et le théorème de Maschke dans le contexte des algèbres simples de dimension finie et de leurs endomorphismes.
Discute des groupes de Lie linéaires, de leurs définitions, de leurs propriétés et de la relation entre les courbes intégrales et les champs vectoriels.