Introduit l'analyse des composantes principales, en mettant l'accent sur la maximisation de la variance dans les combinaisons linéaires pour résumer efficacement les données.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.
Explore l'analyse de séries chronologiques multivariées, la cointégration, la prévision avec les modèles ARMA, et les applications pratiques dans l'analyse des taux d'intérêt.