Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.
Explore la construction de modèles dans la régression linéaire, couvrant des techniques comme la régression par étapes et la régression par crête pour traiter la multicolinéarité.
Explore Ridge et Lasso Regression pour la régularisation dans les modèles d'apprentissage automatique, en mettant l'accent sur le réglage hyperparamétrique et la visualisation des coefficients des paramètres.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.