Explore l'équivalence dans les espaces vectoriels, couvrant les conditions pour que les déclarations soient considérées comme équivalentes et les propriétés des bases algébriques.
Explore la recherche de solutions particulières pour des équations différentielles homogènes, en mettant l'accent sur l'indépendance linéaire et la variation des constantes.
Couvre des vecteurs singuliers dans Liouville CFT, en se concentrant sur la théorie de la représentation et leurs implications en physique mathématique.