Explore les simulations de dynamique moléculaire sous des contraintes holonomiques, en se concentrant sur l'intégration numérique et la formulation d'algorithmes.
Couvre les bases des simulations de dynamique moléculaire, des propriétés d'ensemble, des formulations de mécanique classique, de l'intégration numérique, de la conservation de l'énergie et des algorithmes de contrainte.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Couvre la simulation de la dynamique moléculaire de l'argon liquide à l'aide du potentiel de Lennard-Jones et se concentre sur l'équilibre et la distribution des vitesses à l'équilibre.
Couvre l'environnement informatique pour les exercices de dynamique moléculaire et de Monte Carlo, en mettant l'accent sur la compréhension théorique plutôt que sur les compétences de codage.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.