Explore les approches dynamiques de la théorie spectrale des opérateurs, en mettant l'accent sur les opérateurs auto-adjoints et les opérateurs Schrödinger avec des potentiels définis dynamiquement.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore les propriétés de mélange des systèmes de conservation de mesures infinies, en mettant l'accent sur les suspensions, les transformations de Govers et le gaz Lorentz.