Texte de manipulation: Récupération de documents et classification
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur la classification des images et l'étiquetage des ensembles de données.
Explore le traitement des données texte, en dérivant des ensembles de données propres à partir de textes non structurés, et diverses techniques d'analyse de texte.
Introduit le traitement du langage naturel, qui couvre le prétraitement du texte, l'analyse des sentiments et l'analyse des sujets, en mettant l'accent sur l'établissement d'un indice de risque pour le changement climatique.
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Présente les bases de l'analyse de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de techniques de prétraitement et de modèles d'apprentissage automatique.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.