Couvre la corrélation et les corrélations croisées dans l'analyse des données sur la pollution atmosphérique, y compris les séries chronologiques, les autocorrelations, l'analyse de Fourier et le spectre de puissance.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Couvre l'algorithme Metropolis-Hastings et les approches basées sur les gradients pour biaiser les recherches vers des valeurs de vraisemblance plus élevées.
Explore les techniques de Monte Carlo pour l'échantillonnage et la simulation, couvrant l'intégration, l'échantillonnage d'importance, l'ergonomie, l'équilibrage et l'acceptation de Metropolis.
Introduit des statistiques inférentielles, couvrant l'échantillonnage, la tendance centrale, la dispersion, les histogrammes, les scores z et la distribution normale.